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1. I N T R O D U C T I O N  

Like most winds, (1) the solar wind has a large degree of variability. 
However, even extremely erratic events can have predictable features, if 
these events are governed by an underlying probability distribution. In this 
paper we stress the role of the log-normal distribution in the description of 
the high-energy tail of the electron velocity distribution in the solar wind 
plasma and the relationship of this distribution to a Maxwellian 
(Gaussian) distribution at lower velocities. Howard  Reiss has devised 
masterful uses of probabili ty limit distributions in several areas of science, 
including in theories of nucleation, magnetic relaxation, and even traffic 
flow. It  is an honor and a pleasure to dedicate this paper  to him on the 
occasion of his 66th birthday. 

2. FROM K O L M O G O R O V ' S  ROCKS TO SOLAR ELECTRONS 

In 1941 Kolmogorov  (2~ considered the question of the distribution of 
crushed ore sizes. His major  assumption way that if a rock is of scale size 
R 0 initially, then it is of scale size R1 = 21Ro after one break, where 21 is a 
random number  uniformly distributed between zero and unity. After a 

i Physics Division, Office of Naval Research, Arlington, Virginia 22217. 
2 Institute for Physical Science and Technology, University of Maryland, College Park, 

Maryland 20742. 

1423 

0022-4715/88/0900-1423$06.00/0 �9 1988 Plenum Publishing Corporation 



1424 Shlesinger and Coplan 

succession of breaks the rock has the scale sizes R1, R2,..., RN, where the 
difference Rn 1 -  R.  satisfies 

R. 1 - R . =  ( 1 - 2 n )  Rn_ x (1) 

(Note R.  l > R n  and 0 < 2 n < l . )  
Setting 1 - 2~ = q., one chooses the following combination of random 

variables: 

i Rn 1 - R.  N 
n = l  e ~ - i  = 2 q. (2) 

n = l  

to form (in the continuum limit with dR=Rn ~-Rn) the following 
integral: 

RO d R  _ In R o  = q l  + "'" + qN  (3) 
N-'-" ~ -- R N  

The sum of the "~i has a Gaussian distribution by the central limit theorem, 
which implies that Ro/RN has a log-normal distribution. Note that RN can 
also be written as a 

N 

RN = I-[ 2.Ro (4) 
n = l  

which directly gives the result that R N has a log-normal distribution, 

f (R)  = (2g02) 1/2 R - - 1  exp[ - (In R / ( R )  )2/2o-2] (5) 

where ( R )  and a 2 are the average and variance of the distribution. Note 
that in Eq. (5) we have ignored the fact that the maximum value of R is R0. 

Charged particle velocity distributions in the solar wind and the 
magnetospheres of the planets usually deviate markedly at high velocities 
from a Maxwellian (Gaussian) distribution. This deviation is often 
described in terms of a "core" and "halo" distribution for solar wind 
electrons. (3) The "core" at low to moderate velocities is well represented by 
a Maxwellian distribution, while the high-velocity "halo" has an amplitude 
much greater than predicted by the projected core distribution. An example 
of this core-halo distribution is given in Fig. 1, where a typical solar wind 
electron velocity distribution (see Feldman eta/. (3)) is plotted as a function 
of reduced velocity, defined as velocity divided by mean square deviation of 
the velocity distribution. The data show a transition from a Maxwellian 
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Fig. 1. Velocity distribution function for solar wind electrons as a function of the reduced 
velocity as defined in the text. The lines through the data emphasize the core-halo structure. 
The data point at zero reduced velocity is an extrapolation of the higher velocity data. The 
data are those of Feldman et  al. ~3) 

"core" distribution at velocities below 2 to a more slowly varying halo 
function at higher velocities. The two lines drawn through the data 
emphasize this fact. 

Detailed microscopic models for the motion of the electrons in the 
solar wind have been used to explain the core-halo distribution. ~4] In 
general, the models rely on the facts that the electron-electron collision 
cross section decreases as 1Iv 4, where v is the relative electron velocity, and 
that the electron density decreases as 1/r 2, where r is the heliocentric radius. 

In this paper we show that the core-halo solar wind velocity 
distribution function can be understood in terms of a simple 
phenomenological model of general applicability in which the core has a 
Maxwellian or normal distribution and the halo a log-normal distribution. 
Furthermore, in the presene of structures in the interplanetary medium 
capable of interacting with the electrons, the model predicts a transition at 
the highest velocities to a secondary halo distribution. 

The assumption we employ is that solar electrons are produced with a 
distribution with a high-velocity component. It is most likely that the 
higher velocity electrons collide with slower moving electrons, since the 
scattering cross section varies inversely with the fourth power of velocity 
and the number of low-velocity electrons far exceeds those at high 
velocities. The high-velocity electrons will lose energy to the lower energy 
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electrons in an amount depending upon their relative velocities and impact 
parameter. We assume that the initial magnitude of velocity Iv01 of a solar 
electron is reduced to 21 [Vol (0 < 2 1  < 1) after a single collision, and that 
several collisions occur. After n collisions the velocity is 2 1 - - - ) ' n  [/~ol (with, 
as before, 2i a uniform random variable taking values between zero and 
unity). In complete analogy with Kolmogorov's problem, this analysis 
leads us directly to a log-normal distribution f(v)  for the distribution of 
electron velocities. 

3. A L O W - E N E R G Y  C R O S S O V E R  

The log-normal distribution cannot hold for all values of Ivl because 
after several collision Ivl is reduced to a sufficiently low velocity that the 
solar electron is just as likely to gain as to lose energy in a collision. This is 
the condition for thermalization and a Maxwellian or Gaussian dis- 
tribution must govern the electron velocity distribution at low velocities. 

To show the distinction between the low- and high-velocity dis- 
tributions more clearly, we have plotted the experimental cumulative 
distribution function using the data of Fig. 1 on normal and log-normal 
probability paper (5) in Figs. 2a and 2b. The only difference between the 
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Fig. 2. (a) Cumulat ive velocity distribution function for the data in Fig. 1 plotted on nor- 
mal probability paper. The scales are arranged so that a normal  distribution function will lie 
on a straight line. (b) Cumulat ive velocity distribution function for the data in Fig. 1 plotted 
on log-normal probability paper. The scales are arranged so that  a log-normal distribution 
function will lie on a straight line. 
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figures is the scale of the independent variable. A normal distribution 
appears as a straight line on normal paper (Fig. 2a) and a log-normal 
distribution will give a straight line on log-normal paper (Fig. 2b). It is 
clear that the normal-log-normal representation of the data does indeed 
provide a reasonable fit to the experimental points. 

4. A HIGH-ENERGY CROSSOVER 

Let G(v) be the velocity distribution of solar wind electrons and let 
g(v) be the log-normal distribution generated from electron-electron 
collisions. If G(v) = g(v), then only the previously discussed electron-elec- 
tron collisions determine the form of G(v). Let us suppose other processes 
occur which affect the electron velocity. One candidate is the interaction of 
electrons with a hierarchical interplanetary magnetic field structure as 
discussed by Matthaeus and Goldstein. (6) 

To begin our discussion, let us denote the average value of g(v) by 
<v >. Assume there are interplanetary medium structures of an unspecified 
nature with which the electrons can collide to produce a new log-normal 
distribution gl(v) = (l/s) g(v/s) ( s>  1). Note that the mean value of gl(v) is 
s<v >. If a fraction ~ of the electrons encounter one of these structures and a 
fraction 7 of these encounter two structures and so on, then 

G ( v ) = ( 1 - 7 )  g(v)+~g +-~g -~ + ... (6) 

In our initial discussion 7 = 0 ,  so only the first log-normal term 
entered into the discussion. 

Note that G(v) satisfies the scaling equation (7) 

G(v)=~-G (V) + (1 -  7) (7) 

While the solution for G(v) resembles g(v) for small v, it differs substan- 
tially as v increases. The asymptotic behavior of G(v) is 

lim G(v)= v -~-~ 
V ~ o o  

where 

kt = - l o g  y/log s 

Thus, we expect G(v) to be Maxwellian for small v, log-normal for 
intermediate v, and algebraically decaying for large v. 



1428 Shlesinger and Coplan 

Electron velocity distribution data  are available at energies up to 
MeV; however,  at energies above approximately  1 keV (reduced velocity of 
10) other  processes originating in the solar co rona  give rise to electrons 
that  effectively mask these interactions. (8) Were it possible to separate the 
high-energy coronal  electrons from the solar wind electrons, the parameter  
/~ could be obtained from the slope of the high-velocity por t ion (above 
1 keV) of the distribution. The parameter  s could be derived from /~ and 
with it the hypothesized interplanetary structures. 

In  conclusion, we emphasize that  a l though the above statistical 
approach  to unders tanding velocity distribution functions says very little 
about  microscopic plasma processes, it does provide a f ramework for a 
discussion of the general classes of  interactions that  exist. 
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